Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells.

نویسندگان

  • T Takenaka
  • G J Murray
  • G Qin
  • J M Quirk
  • T Ohshima
  • P Qasba
  • K Clark
  • A B Kulkarni
  • R O Brady
  • J A Medin
چکیده

Fabry disease is a compelling target for gene therapy as a treatment strategy. A deficiency in the lysosomal hydrolase alpha-galactosidase A (alpha-gal A; EC ) leads to impaired catabolism of alpha-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop vascular occlusions that cause cardiovascular, cerebrovascular, and renal disease. Unlike for some lysosomal storage disorders, there is limited primary nervous system involvement in Fabry disease. The enzyme defect can be corrected by gene transfer. Overexpression of alpha-gal A by transduced cells results in secretion of this enzyme. Secreted enzyme is available for uptake by nontransduced cells presumably by receptor-mediated endocytosis. Correction of bystander cells may occur locally or systemically after circulation of the enzyme in the blood. In this paper we report studies on long-term genetic correction in an alpha-gal A-deficient mouse model of Fabry disease. alpha-gal A-deficient bone marrow mononuclear cells (BMMCs) were transduced with a retrovirus encoding alpha-gal A and transplanted into sublethally and lethally irradiated alpha-gal A-deficient mice. alpha-gal A activity and Gb3 levels were analyzed in plasma, peripheral blood mononuclear cells, BMMCs, liver, spleen, heart, lung, kidney, and brain. Primary recipient animals were followed for up to 26 weeks. BMMCs were then transplanted into secondary recipients. Increased alpha-gal A activity and decreased Gb3 storage were observed in all recipient groups in all organs and tissues except the brain. These effects occurred even with a low percentage of transduced cells. The findings indicate that genetic correction of bone marrow cells derived from patients with Fabry disease may have utility for phenotypic correction of patients with this disorder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preselective gene therapy for Fabry disease.

Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme alpha-galactosidase A (alpha-gal A; EC ). We previously have demonstrated long-term alpha-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the e...

متن کامل

Differential Secondary Reconstitution of In Vivo-Selected Human SCID-Repopulating Cells in NOD/SCID versus NOD/SCID/γ chainnull Mice

Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chain(null) mice to support long-term engraftment of MGMT(P140K)-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was in...

متن کامل

Phenotypic correction of Fanconi anemia group C knockout mice.

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc -/- nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for test...

متن کامل

Pre-treatment with rapamycin protects hematopoiesis against radiation injury

Background: Protection of hematopoietic system has become a primary goal in the development of novel medical countermeasures against ionization radiation and radiotherapy. This study was to explore the role of rapamycin in normal tissues against radiation. Materials and Methods: Mice were pretreated with rapamycin by i.p. every other day for five times before 5 Gy or 8.5 Gy γ-ray whole bo...

متن کامل

Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice.

Fabry disease is a lysosomal storage disorder caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (alpha-gal A). This enzyme deficiency leads to impaired catabolism of alpha-galactosyl-terminal lipids such as globotriaosylceramide (Gb3). Patients develop painful neuropathy and vascular occlusions that progressively lead to cardiovascular, cerebrovascular, and renal dysfunction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 13  شماره 

صفحات  -

تاریخ انتشار 2000